Modification and control of the spontaneous emission from an M-type atom embedded in an anisotropic photonic crystal

نویسندگان

  • Chunling Ding
  • Jiahua Li
  • Xiaoxue Yang
  • Xin-You Lü
چکیده

We describe the spontaneous emission properties of an M-type five-level atom embedded in a photonic crystal (PC), which is coherently driven by two external laser fields. It leads to two types of quantum interference: reservoir-induced interference and laser-induced interference. Considering different detunings of atomic transition frequencies from band edges, we reveal some interesting phenomena such as spectral-line enhancement, spectral-line suppression, spectral-line narrowing, reservoir-induced cancellation of spontaneous emission and the appearance of dark lines, which originate from the quantum interference effects and the control of external laser fields. These investigations suggest possible applications in quantum optics, optical communications and in the fabrication of novel optoelectronic devices. PACS numbers: 42.50.Gy, 32.80.Qk, 32.50.+d

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous Emission Spectrum from a Driven Three-Level Atom in a Double-Band Photonic Crystal

Abstract The spontaneous emission spectrum from a driven three-level atom placed inside a double-band photonic crystal has been investigated. We use the model which assumes the upper levels of the atomic transition are coupled via a classical driving field. The transition from one of the upper levels to lower level couples to the modes of the modified reservoir, and the transition from the oth...

متن کامل

Entanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence

The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...

متن کامل

Numerical Calculation of Resonant Frequencies and Modes of a Three-Atom Photonic Molecule and a Photonic Crystal in an External Cavity

In the present paper, resonant frequencies and modes of a three-atom photonic molecule and a photonic crystal placed within a cavity are numerically calculated. First, governing formulation in transverse electric field mode (TE) is obtained using Maxwell equations. Then, an algorithm based on a finite difference scheme and matrix algebra is presented. The algorithm is then implemented in a comp...

متن کامل

Photonic Crystals and Inhibition of Spontaneous Emission: An Introduction

In the first part of this introductory review we outline the developments in photonic band gap materials from the physics of photonic band gap formation to the fabrication and potential applications of photonic crystals. We briefly describe the analogies between electron and photon localization, present a simple model of a band structure calculation and describe some of the techniques used for ...

متن کامل

Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure

In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011